Zero‐shot multi‐label learning via label factorisation
نویسندگان
چکیده
منابع مشابه
Stacking Label Features for Learning Multilabel Rules
Dependencies between the labels is commonly regarded as the crucial issue in multilabel classification. Rules provide a natural way for symbolically describing such relationships, for instance, rules with label tests in the body allow for representing directed dependencies like implications, subsumptions, or exclusions. Moreover, rules naturally allow to jointly capture both local and global la...
متن کاملMLSLR: Multilabel Learning via Sparse Logistic Regression
Multilabel learning, an emerging topic in machine learning, has received increasing attention in recent years. However, how to effectively tackle high-dimensional multilabel data, which are ubiquitous in real-world applications, is still an open issue in multilabel learning. Although many efforts have been made in variable selection for traditional data, little work concerns variable selection ...
متن کاملLearning Image Conditioned Label Space for Multilabel Classification
This work addresses the task of multilabel image classification. Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visualsemantic embedding, we exploit extending these models for multilabel images. Specifically, we propose an imagedependent ranking model, which returns a ranked list of labels according to its relevance to the input image. In contrast ...
متن کاملLabel Filters for Large Scale Multilabel Classification
When assigning labels to a test instance, most multilabel and multiclass classifiers systematically evaluate every single label to decide whether it is relevant or not. This linear scan over labels becomes prohibitive when the number of labels is very large. To alleviate this problem we propose a two step approach where computationally efficient label filters pre-select a small set of candidate...
متن کاملMultilabel Classification with Principal Label Space Transformation
We consider a hypercube view to perceive the label space of multilabel classification problems geometrically. The view allows us not only to unify many existing multilabel classification approaches but also design a novel algorithm, principal label space transformation (PLST), that captures key correlations between labels before learning. The simple and efficient PLST relies on only singular va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET Computer Vision
سال: 2019
ISSN: 1751-9640,1751-9640
DOI: 10.1049/iet-cvi.2018.5131